Relating Research to Practice has identified a limited set of Hot Topics representing pressing issues facing the ISE field. Download synthesis papers or browse research briefs related to these topics.





All research briefs tagged to Research, Method, and Theory
Viewing 1 - 10 of 23

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.

A growing body of research explores the ways that science learning experiences can develop people’s interest in science. In this article, the researchers provide a framework for conceptualizing interest in four phases: triggered situational interest; maintained situational interest; emerging individual interest; and well-developed individual interest. They claim that interest is often conceptualized as a characteristic that a person either has or doesn’t have and that educators could benefit from thinking more about how to stimulate interest. This paper has a review of the literature on interest, as well as an examination of alternative models of interest.


Bohnert, A., Fredricks, J., and Randall, E. (2010). Capturing unique dimensions of youth organized activity involvement: Theoretical and methodological considerations. Review of Educational Research, 80(4), 576–610.

This study reviews the literature regarding current approaches to measuring participation in organized out-of-school-time (OST) activity settings and their effects on learners. The paper examines learners’ participation in terms of the dimensions of breadth, intensity, duration, and engagement, discussing the theoretical foundations and methodological approaches for each. The researchers note the dialectical nature of each of these dimensions. For example, participation is likely to become more intense (frequent and lengthy) as it endures over time, and as it endures over time it is more likely to intensify. This study provides a comprehensive overview of relevant measurement issues and approaches.


Morag, O., & Tal, T. (2012). Assessing learning in the outdoors with the Field Trip in Natural Environments (FiNE) framework. International Journal of Science Education, 34(5), 745–777.

Despite increasing interest in the potential of outdoor learning experiences, limited research has focused on identifying “good” outdoor education practice. In this paper, the authors propose a theoretically based practical framework for assessing field trips in nature parks and other outdoor settings. The framework focuses on four aspects of field trips: preparation, pedagogy, activity, and outcomes.


Jakobsson, A., Mäkitalo, Å. & Säljö, R. (2009). Conceptions of knowledge in research on students' understanding of the greenhouse effect. Science Education, 93(6), 978–995.

This study suggests that the assessment of students’ understanding of scientific vocabulary, concepts, and reasoning associated with the greenhouse effect may be better accomplished by observing and understanding learners’ developing language use over time. The indication of previous research that students hold tenacious misconceptions may be an artifact of the questionnaires used. The authors argue that listening to student conversations is the key to better recognize learning. This paper can help ISE educators think more deeply about how and when to assess for student understanding, including considering most appropriate and informative methods.


DiGironimo, N. (2011). What is technology? Investigating student conceptions about the nature of technology. International Journal of Science Education, 33(10), 1337–1352.

A good understanding of the nature of technology arguably facilitates learners’ participation in a technology-rich, information-driven society. To support students’ engagement and assess their understanding, educators need a functional definition of technology. This paper offers a definition with a related framework for examining students’ understanding.


Cobb, P., Zhao, Q., & Dean, C. (2009). Conducting design experiments to support teachers' learning: A reflection from the field. Journal of the Learning Sciences, 18(2), 165–199.

This article reports the results of a design research experiment in professional development for teachers of middle school mathematics. The authors report on how they developed their programs to account for three underlying conceptual challenges to their efforts: (1) the institutional contexts that teachers worked in, (2) the ways in which the learning developed in and through the community of practice, and (3) the relationship between teachers' learning in the program and teachers' teaching in their classrooms. Especially because of the different institutional cultures found in ISE versus school settings, this article could be highly informative for designing ISE-based professional development programs for teachers.


Scott, P., Mortimer, E. & Ametller, J. (2011). Pedagogical link-making: A fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1), 3–36.

This study discusses a process that the authors have termed ‘pedagogical link-making’. This may be described as the way in which educators and learners establish connections between ideas as part of the ongoing interactions comprising teaching and learning. This process has clear implications for educators: by supporting knowledge building, promoting continuity, and encouraging emotional investment, educators can help learners make links between ideas and experiences.


Fleer, M. (2009). Supporting scientific conceptual consciousness of learning in a ‘roundabout way’ in play-based contexts. International Journal of Science Education, 31(8) 1069–1089.

Primary and early childhood teachers are generally regarded as lacking competence and confidence in teaching science. But rather than pointing the finger at teachers, this paper suggests that the prevailing philosophy of pedagogy may be to blame.


Roschelle, J., Bakia, M., Toyama, Y, & Patton, C. (2011). Eight issues for learning scientists about education and the economy. Journal of the Learning Sciences, 20(1), 3–49.

The authors of this paper examine a common rhetorical claim that improved STEM education is critical to the economic future of the United States. The first part of the paper points out certain weaknesses in this argument. The second part considers how learning research might be directed to test connections between STEM education and the economy, including with respect to workforce pipeline issues and programs. This paper is addressed to researchers in the learning sciences, but its arguments may also be of interest to educators leading workforce development programs.




Viewing 1 - 10 of 23