Relating Research to Practice has identified a limited set of Hot Topics representing pressing issues facing the ISE field. Download connected collections, synthesis papers or browse research briefs related to these topics.

Synthesis Papers

Connected Collections

Connected Collections

All research briefs tagged to Expanding Access to Non-Dominant Populations
Viewing 1 - 10 of 50

Santau, A.O., Secada, W., Maerten-Rivera, J., Cone, N. & Lee, O. (2010). US Urban elementary teachers’ knowledge and practices in teaching science to English language learners: Results from the first year of a professional development intervention. International Journal of Science Education, 32(15), 2007–2032.

Teachers of English language learners face the dual challenge of helping students to learn the academic content of science and to acquire English language proficiency. Elementary teachers, meanwhile, face the additional challenge of responding to new teaching requirements outlined within reform initiatives with an often limited understanding of science and its practices. The study reported in this paper sought to examine these issues (and also a comparison of teacher’s knowledge and practice between grade levels) as part of the analysis of a long-term professional development initiative for urban elementary schools. The professional development (PD) sought to enhance teacher knowledge of science content, teaching practices, inquiry processes, and teaching practices in science to support English language development.

Galloway, F. & Shea, M. M. (2009). Does your organization welcome participants with disabilities? A new assessment tool. Afterschool Matters, 9, 12–19.

With an increase in the enrollments of youth with disabilities in afterschool programs, organizations must evaluate if their programs truly welcome children and youth with disabilities. The authors of this study developed a valid and statistically reliable instrument, Organizational Developmental Model of Inclusion for Individuals with Disabilities (ODMI-IWD), to assist the program providers in developing policies to improve on perceived weakness in the areas of inclusion: diversity, differential treatment, congruency, motivational imperative, and experience.

Wadman, M., deProphetis Driscoll, W. & Kurzawa, E. (2009). Creating communicative scientists. A collaboration between a science center, college, and science industry. Journal of Museum Education, 34(4), 41–54.

In this paper, the authors describe the process and results of an innovative three-partner project that involved students, scientists, and ISE educators in developing resources for a young audience.

Nasir, N. S., & McKinney de Royston, M. (2013). Power, identity, and mathematical practices outside and inside school. Journal for Research in Mathematics Education, 44(1), 264–287.

This article discusses intellectual activities in African American culture that privilege mathematical thinking. The mathematical thinking in these activities is often not valued in the classroom. The authors argue for a shift from a deficit view of the cultural activities of non-dominant groups to an additive perspective that values the cultural wealth of these groups and uses that wealth to support student identity and learning.

Emdin, C. (2011). Dimensions of communication in urban science education interactions and transactions. Science Education, 95(1), 1–20.

This study is relevant to educators seeking to expand science practices and discourse in their programs for youth. The author finds that a lack of understanding of everyday communication patterns of African-American students leads many science teachers to shut down students just as they are beginning to express interest and active involvement in the science classroom. The result may be orderly looking classrooms, but the youth have in fact “checked out” and are merely following procedures. This paper presents a framework for analyzing various levels of authentic involvement in the science classroom, and is an important resource for ISE educators seeking to engage urban youth in structured science education programs.

Swanson, L. H., Bianchini, J. A., & & Lee, J. S. (2014). Engaging in argument and communicating information: A case study of English language learners and their science teacher in an urban high school. Journal for Research in Science Teaching, 51(1), 31–64. doi:10.1002/tea.21124

In this study, the researchers investigated opportunities and challenges English language learners (ELLs) faced while learning the scientific practices of argumentation and communication of findings (NGSS practices 7 and 8; NGSS Lead States, 2013). Specifically, they asked how the teacher engaged ELLs in argumentation and communication and how the ELLs actually used these practices.

Malone, K. R., & Barabino, G. (2009). Narrations of race in STEM research settings: Identity formation and its discontents. Science Education, 93(3), 485–510.

This study investigates specific challenges that students of color have in developing a personal identity related to science. The researchers examined how experiences in graduate school programs shaped the emergent identities of African-American women students in science and engineering. The study sheds light on the barriers cultural minority students might face in their pursuit of science in school and in careers, and suggests that educators might help to prepare students for these experiences.

Howes, E. V., Lim, M., & Campos, J. (2009). Journeys into inquiry-based elementary science: Literacy practices, questioning, and empirical study. Science Education, 93(2), 189–217.

Combining science and literacy is becoming a common teaching strategy, which builds on the importance of professional scientists’ use of reading, writing, and speaking in their work. This paper consists of descriptions of efforts of three elementary teachers to teach literacy through science. The authors’ purpose was to theorize how and why to integrate literacy practices with scientific inquiry, to provide examples for educators, and to provide considerations for implementation, all of which may also be useful for informal educators.

Tran, N. A. (2011). The relationship between students’ connections to out-of-school experiences and factors associated with science learning. International Journal of Science Education, 33(12), 1625-1651.

How do students make connections between in-school and out-of school contexts? In this study involving the analysis of questionnaire responses of 1014 11th and 12th graders, the author found that out-of-school experiences are positively associated with the learning outcomes of science learning achievement, science interest, and self-efficacy. However, the analysis also showed that connections made by teachers to out-of-school experiences negatively correlated with student achievement.

Feinstein, N. W., & Meshoulam, D. (2013). Science for what public? Addressing equity in American science museums and science centers. Journal of Research in Science Teaching, 51(3), 368–394. doi:10.1002/tea.21130

Feinstein and Meshoulam’s study examines the nature of equity work in museums and science centres across the U.S. Based on 32 interviews with leaders from 15 informal science education organisations, the authors identified two different perspectives, client and cooperative, each with its own strengths and implications for informal science education.

Viewing 1 - 10 of 50