Relating Research to Practice has identified a limited set of Hot Topics representing pressing issues facing the ISE field. Download connected collections, synthesis papers or browse research briefs related to these topics.


Synthesis Papers

Connected Collections

Connected Collections




All research briefs tagged to STEM Learning through Digital & Visual Media
Viewing 1 - 10 of 12

Lee, S.W-Y., Tsai, C-C., Wu, Y-T., Tsai, M-J., Liu, T-C., Hwang F-K., Chang, C-Y. (2011). Internet-based science learning: A review of journal publications. International Journal of Science Education, 33(14), 1893–1925.

The Internet now plays an important role in education. This paper reviews the current literature on Internet-based science learning environments, focusing in particular on the characteristics of learners that affect the extent of science learning. It offers a useful resource for ISE practitioners who provide online science learning.


Sharples, M., Scanlon, E., Ainsworth, S., Anastopoulou, S., Collins, T., Crook, C., Jones, A., Kerawalla, L., Littleton, K., Mulholland, P., & O’Malley, C. (2014). Personal inquiry: Orchestrating science investigations within and beyond the classroom. Journal of the Learning Sciences. Doi: 10.1080/10508406.2014.944642

Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.


DiGironimo, N. (2011). What is technology? Investigating student conceptions about the nature of technology. International Journal of Science Education, 33(10), 1337–1352.

A good understanding of the nature of technology arguably facilitates learners’ participation in a technology-rich, information-driven society. To support students’ engagement and assess their understanding, educators need a functional definition of technology. This paper offers a definition with a related framework for examining students’ understanding.


Hampp, C., & Schwan, S. (2014). The role of authentic objects in museums of the history of science and technology: Findings from a visitor study. International Journal of Science Education, Part B: Communication and Public Engagement. doi:10.1080/21548455.2013.875238

Objects define museums: The collection, maintenance, and display of objects are the central functions of museum practice. But does it matter whether the objects on display are authentic? Investigators Hampp and Schwan's findings suggest that visitors learn as much from non-authentic objects as from authentic ones, but that aspects of authenticity shape visitors’ emotional experiences of museum objects.


Lai, B., Slota, S. & Medin, D. (2012). "Our Princess Is in Another Castle. A Review of Trends in Serious Gaming for Education. Review of Educational Research, 82(296), 295-299.

Do video games have positive impacts on the academic K–12 curriculum? A literature review of more than 300 research articles finds minimal evidence that video games have any positive effects on mathematics and science achievement. From a situated-learning perspective, however, games may afford other benefits that measures on test scores do not record.


Rahm, J. (2012). Collaborative imaginaries and multi-sited ethnography: space-time dimensions of engagement in an afterschool science programme for girls. Journal of the Learning Science 7(2), 247-264

This three-year community-based afterschool research study focused on how girls’ engaged with science and how they negotiate identities with and in opposition to science. As part of a larger multi-sited ethnography, Rahm reports on learning and identity formation in relationship to science.


Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48(1), 71–93.

This article makes a case for providing multiple types of hands-on resources to support learner inquiry. More specifically, a computer simulation of an electric circuit complemented work with a real circuit to support learners’ conceptual development. When learners had the opportunity to use both simulated and real circuits, less structured guidance seemed to benefit the inquiry process.


White, T., & Pea, R. (2011). “Distributed by design: On the promises and pitfalls of collaborative learning with multiple representations.” Journal of the Learning Sciences, 20(3), 489–547. doi:10.1080/10508406.2010.542700.

This article provides firm evidence, for formal and informal educators alike, that shared learning can be powerful and meaningful, if carefully considered. Findings from a study conducted in a summer middle school mathematics class suggest that when students are able to ask legitimate, authentic questions and share understanding about a common problem, their learning becomes truly “distributed by design.”


Brewer, P. R., & Ley, B. L. (2013). Whose science do you believe? Explaining trust in sources of scientific information about the environment. Science Communication, 35(1), 115–137. doi:10.1177/1075547012441691

Brewer and Ley surveyed 851 participants in a U.S. city and revealed relationships among demographic characteristics, religious beliefs, political views, and trust in multiple forms of science communication sources.


Lehrer, R., & Schauble, L. (2003). Origins and evolution of model-based reasoning in mathematics and science. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 59–70). Mahwah, NJ: Erlbaum.

The adoption of the Next Generation Science Standards means that many educators who adhere to model-based reasoning styles of science will have to adapt their programs and curricula. In addition, all practitioners will have to teach modeling, and model-based reasoning is a useful way to do so. This brief offers perspectives drawn from Lehrer and Schauble, two early theorists in model-based reasoning.




Viewing 1 - 10 of 12