Relating Research to Practice has identified a limited set of Hot Topics representing pressing issues facing the ISE field. Download synthesis papers or browse research briefs related to these topics.





All research briefs tagged to Engaging Learners with Scientific Practices
Viewing 1 - 10 of 69

Wadman, M., deProphetis Driscoll, W. & Kurzawa, E. (2009). Creating communicative scientists. A collaboration between a science center, college, and science industry. Journal of Museum Education, 34(4), 41–54.

In this paper, the authors describe the process and results of an innovative three-partner project that involved students, scientists, and ISE educators in developing resources for a young audience.


Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer argumentation in the school science laboratory – Exploring effects of task features. International Journal of Science Education, 33(18), 2527–2558.

Helping learners to engage with argumentation is one key part of science education. Lab work is another. Combining the two, therefore, would seem sensible. This study examined the effect of three different lab-based tasks on the quality of any subsequent argumentation. It found that tasks providing explicit instructions to interrogate data and justify claims were the most productive.


Van Eijck, M. & Roth, W.-M. (2009). Authentic science experiences as a vehicle to change students’ orientations toward science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 4, 611–638.

This study aims to answer two questions important to informal science learning: What is “authentic”? And, why do we want students to have authentic science learning experiences? Using ethnographic methods, the authors developed a case study over the course of one year of an Aboriginal student, Brad, who participated in a scientific internship program that included both nature conservation and laboratory work. This study analyzes how Brad’s cultural identity interacted, influenced, and hybridized with the scientific and other practices he participated in during his internship. The paper will be of interest to ISE educators exploring how program experiences interact with identity to encourage expanded participation in STEM.


Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498. doi:10.1002/sce.20278

In order to broaden the conceptualizations of argument in science education, Bricker and Bell draw from diverse fields: the sociology of science, the learning sciences, and cognitive science to help practitioners think of new ways to bring argumentation into learning spaces while expanding what counts as scientific argument.


Gutwill, J. P., & Allen, S. (2012). Deepening students’ scientific inquiry skills during a science museum field trip. Journal of the Learning Sciences, 21(1), 130–181. doi:10.1080/10508406.2011.555938

This article describes how two inquiry games promoted student science skills in a museum setting while minimizing demands on teachers, fostering collaboration, and incorporating chaperones. Students who played these games engaged in more scientific inquiry behaviors than did students in control groups.


Swanson, L. H., Bianchini, J. A., & & Lee, J. S. (2014). Engaging in argument and communicating information: A case study of English language learners and their science teacher in an urban high school. Journal for Research in Science Teaching, 51(1), 31–64. doi:10.1002/tea.21124

In this study, the researchers investigated opportunities and challenges English language learners (ELLs) faced while learning the scientific practices of argumentation and communication of findings (NGSS practices 7 and 8; NGSS Lead States, 2013). Specifically, they asked how the teacher engaged ELLs in argumentation and communication and how the ELLs actually used these practices.


Byrne, J., Ideland, M., Malmberg, C., & Grace, M. (2014). Climate change and everyday life: Repertoires children use to negotiate a socio-scientific issue. International Journal of Science Education, 36(9), 1491–1509. doi:10.1080/09500693.2014.891159

The premise underlying this paper by Byrne, Ideland, Malmberg, and Grace is that citizenship should not be regarded as a privilege — and responsibility — only of adulthood. Children, too, can be actively engaged as citizens. In their study, Byrne and colleagues examined the interpretive repertoires of children engaged in discussions about socioscientific issues. They found that the children used productive argumentation to negotiate complex issues and propose solutions.


Tatalovic, M. (2009). Science comics as tools for science education and communication: A brief, exploratory study. Journal of Science Communication, 8(4), 1-17.

This paper argues that comic books, comic strips, and other sequential art covering scientific concepts and stories about scientists can be used to good effect for science learning, especially for grounding scientific fact in social contexts. The paper includes a rich list of existing comics that practitioners can use in classes and programs for ISE audiences.


Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2010). Finding out how they find it out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education, 32(15), 2033–2053.

A study contrasting scientific reasoning skills of students with limited knowledge of the domain against more expert groups found little difference in nature of hypothesising and experimentation, but their lack of domain knowledge hindered non-experts' abilities to develop and test models. Findings highlight the need for support to understand models and organize knowledge.


Sadeh, I. & Zion, M. (2009). The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 46, 1137–1160.

In this study, researchers compared two different forms of inquiry, guided and open. The authors found that open inquiry was more effective than guided inquiry in building students' understanding about scientific procedures. For example, students engaged in open inquiry gained insights into the ways that scientists need to adjust their studies as new information or problems arise. The findings of this research will be of interest to ISE educators who are integrating inquiry-based instruction into their programs.




Viewing 1 - 10 of 69