Results for Other
Viewing 1 - 10 of 59

Evans, M. A., Lopez, M., Maddox, D., Drape, T., & Duke, R. (2014). Interest-driven learning among middle school youth in an out-of-school STEM studio. Journal of Science Education Technology, 23(5), 624–640. doi:10.1007/s10956-014-9490-z

In this paper investigates how intentionally designed features of an out-of-school time program,< a href=> Studio STEM, influenced middle school youths’ engagement in their learning. The authors took a connected learning approach, using new media to support peer interaction and engagement with an engineering design challenge in an open and flexible learning environment.

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.

A growing body of research explores the ways that science learning experiences can develop people’s interest in science. In this article, the researchers provide a framework for conceptualizing interest in four phases: triggered situational interest; maintained situational interest; emerging individual interest; and well-developed individual interest. They claim that interest is often conceptualized as a characteristic that a person either has or doesn’t have and that educators could benefit from thinking more about how to stimulate interest. This paper has a review of the literature on interest, as well as an examination of alternative models of interest.

Penuel, W. R., Fishman, B. J., Cheng, B. H., & Sabelli, N. (2011). Organizing research and development at the intersection of learning, implementation, and design. Educational Researcher, 40(7), 331–337. doi:10.3102/0013189X11421826

One challenge in scaling up effective educational programs is how to adjust implementation to local contexts. One solution that the authors Penuel, Fishman, Cheng, and Sabelli propose is “design-based implementation research,” (DBIR) in which researchers and practitioners collaboratively identify problems and strategies during implementation while learning from this process to support innovations in new contexts.

Nasir, N. S., & McKinney de Royston, M. (2013). Power, identity, and mathematical practices outside and inside school. Journal for Research in Mathematics Education, 44(1), 264–287.

This article discusses intellectual activities in African American culture that privilege mathematical thinking. The mathematical thinking in these activities is often not valued in the classroom. The authors argue for a shift from a deficit view of the cultural activities of non-dominant groups to an additive perspective that values the cultural wealth of these groups and uses that wealth to support student identity and learning.

Vossoughi, S. & Bevan, B. (October, 2014). Making and Tinkering: A review of the Literature. National research Council Committee on Out of School Time STEM: 1-55.

Vossoughi and Bevan (2014) conducted a literature review of educational research on making and tinkering. They considered what was known about learning opportunities for young people afforded by high-quality tinkering and making experiences. Specifically they reviewed the historical roots of making, the emerging design principles that characterized tinkering and making programs, the pedagogical theories and practices that lead to supportive and collaborative learning environments, as well as the possibilities and tensions associated with equity-oriented teaching and learning.

Bohnert, A., Fredricks, J., and Randall, E. (2010). Capturing unique dimensions of youth organized activity involvement: Theoretical and methodological considerations. Review of Educational Research, 80(4), 576–610.

This study reviews the literature regarding current approaches to measuring participation in organized out-of-school-time (OST) activity settings and their effects on learners. The paper examines learners’ participation in terms of the dimensions of breadth, intensity, duration, and engagement, discussing the theoretical foundations and methodological approaches for each. The researchers note the dialectical nature of each of these dimensions. For example, participation is likely to become more intense (frequent and lengthy) as it endures over time, and as it endures over time it is more likely to intensify. This study provides a comprehensive overview of relevant measurement issues and approaches.

Barriault, C., & Pearson, D. (2010). Assessing exhibits for learning in science centers: A practical tool. Visitor Studies, 13(1), 90–106.

In informal learning environments such as museums and science centers, researchers sometimes assess the effect of learners’ experiences by looking at their engagement. In this paper, researchers Barriault and Pearson describe a framework that identifies three different levels of visitor engagement with exhibits in a science center: initiation, transition, and breakthrough.

Devine-Wright, P., Devine-Wright, H., & Fleming, P. (2004). Situational influences upon children’s beliefs about global warming and energy. Environmental Education Research, 10(4), 493–506.

This study highlights the ways in which individuals’ beliefs and their perceptions of self-efficacy can affect their attitudes toward global climate change. Individuals with personal philosophies favoring active cooperation and participation seem more likely to see the value in taking action to fight climate change.

Buchholz, B., Shively, K., Peppler, K., & Wohlwend, K. (2014). Hands on, hands off: Gendered access in crafting and electronics practices. Mind, Culture, and Activity, 21(4), 278–297. doi:10.1080/10749039.2014.939762

In order to reframe how learning is organized in traditionally male-dominated areas of STEM education, the authors show how collaborative girl-boy pairs engaged with an “e-textiles” making activity. E-textiles are circuit activities combining needles, fabric, and conductive thread, challenging traditional gender practices related to both sewing and electronics.

Medin, D. L., & Bang, M. (2014). The cultural side of science communication. Proceedings of the National Academy of Sciences of the United States of America, 111, 13621–13626. doi:10.1073/pnas.1317510111

What do images communicate about humans’ place in nature? Medin and Bang posit that the artifacts used to communicate science—including words, photographs, and illustrations—commonly reflect the cultural orientations of their creators. The authors argue that Native Americans traditionally see themselves as part of nature and focus on ecological relationships, while European Americans perceive themselves as outside of nature and think in terms of taxonomic relationships.

Viewing 1 - 10 of 59