Results for Interest
Viewing 1 - 10 of 42

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.

A growing body of research explores the ways that science learning experiences can develop people’s interest in science. In this article, the researchers provide a framework for conceptualizing interest in four phases: triggered situational interest; maintained situational interest; emerging individual interest; and well-developed individual interest. They claim that interest is often conceptualized as a characteristic that a person either has or doesn’t have and that educators could benefit from thinking more about how to stimulate interest. This paper has a review of the literature on interest, as well as an examination of alternative models of interest.


Bohnert, A., Fredricks, J., and Randall, E. (2010). Capturing unique dimensions of youth organized activity involvement: Theoretical and methodological considerations. Review of Educational Research, 80(4), 576–610.

This study reviews the literature regarding current approaches to measuring participation in organized out-of-school-time (OST) activity settings and their effects on learners. The paper examines learners’ participation in terms of the dimensions of breadth, intensity, duration, and engagement, discussing the theoretical foundations and methodological approaches for each. The researchers note the dialectical nature of each of these dimensions. For example, participation is likely to become more intense (frequent and lengthy) as it endures over time, and as it endures over time it is more likely to intensify. This study provides a comprehensive overview of relevant measurement issues and approaches.


Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., Wong, B. (2010). “Doing” science versus “being” a scientist: Examining 10/11-year-old schoolchildren’s construction of science through the lens of identity. Science Education, 94(4), 617–639.

Research shows that between ages 10 and 14, children’s interest in science declines sharply. This study investigates 10- and 11-year-old children’s attitudes toward science and relates it to identity, finding that children show a preference for either school (“safe”) science or what they see as grown-up (“dangerous”) science.


Tran, N. A. (2011). The relationship between students’ connections to out-of-school experiences and factors associated with science learning. International Journal of Science Education, 33(12), 1625-1651.

How do students make connections between in-school and out-of school contexts? In this study involving the analysis of questionnaire responses of 1014 11th and 12th graders, the author found that out-of-school experiences are positively associated with the learning outcomes of science learning achievement, science interest, and self-efficacy. However, the analysis also showed that connections made by teachers to out-of-school experiences negatively correlated with student achievement.


Azevedo, F. S. (2011). Lines of practice: A practice-centered theory of interest relationships. Cognition and Instruction, 29(2), 147–184. doi:10.1080/07370008.2011.556834

What keeps an individual interested and motivates long-term engagement in a practice? This Azevedo article presents a grounded theory of long-term, self-motivated participation based on data gathered through an ethnography of hobbyists’ participation in model rocketry. The author emphasizes that long-term engagement depends on the connection of the activity to the participant’s “larger life.”


Clegg, T., & Kolodner, J. (2013). Scientizing and cooking: Helping middle-school learners develop scientific dispositions. Science Education, 98(1), 36–63. doi:10.1002/sce.21083

Participants in Kitchen Science Investigators, an afterschool program for middle school students, learn science through cooking, baking, and experimenting with recipes. In-depth case studies analyzed how and why girls begin to scientize, or see their worlds through a scientific lens, and how the program structure supported this shift.


Mallya, A., Mensah, F. M., Contento, I. R., Koch, P. A., & Calabrese Barton, A. (2012). Extending science beyond the classroom door: Learning from students’ experiences with the Choice, Control, and Change (C3) curriculum. Journal of Research in Science Teaching, 49(2), 244–269.

This paper explores how a school-day science and nutrition curriculum, Choice, Control and Change (C3), shaped student thinking, decision making, and actions outside the classroom. The curriculum taught health science content and engaged students in activities focused on analyzing and changing their personal health choices.


Rosebery, A. S., Ogonowski, M., DiSchino, M., & Warren, B. (2010). "The coat traps all your body heat": Heterogeneity as fundamental to learning. Journal of the Learning Sciences, 19(3), 322–357.

This study makes the case for the ways in which children's everyday experiences are foundational to learning science. The authors argue for the importance of instruction that capitalizes on the diverse experiences and ways of thinking that children bring to the classroom. The article has implications for the design of learning activities in informal settings, where, in the absence of testing pressures, educators might be more free to engage children in "science talk" to support deeper meaning-making.


Hampden-Thompson, G., & Bennett, J. (2013). Science teaching and learning activities and students’ engagement in science. International Journal of Science Education, 35(8), 1325–1343. doi: 10.1080/09500693.2011.608093

This study uses data from the 2006 PISA survey to examine the association between student engagement in science and the nature of teaching and learning activities. It also explores school and family factors. Key findings are to be expected but also surprising. For example, variety in types of activity is associated with greater engagement. However, smaller classes do not necessarily result in greater enjoyment of science!




Viewing 1 - 10 of 42