Results for Afterschool/OST
Viewing 1 - 10 of 32

Galloway, F. & Shea, M. M. (2009). Does your organization welcome participants with disabilities? A new assessment tool. Afterschool Matters, 9, 12–19.

With an increase in the enrollments of youth with disabilities in afterschool programs, organizations must evaluate if their programs truly welcome children and youth with disabilities. The authors of this study developed a valid and statistically reliable instrument, Organizational Developmental Model of Inclusion for Individuals with Disabilities (ODMI-IWD), to assist the program providers in developing policies to improve on perceived weakness in the areas of inclusion: diversity, differential treatment, congruency, motivational imperative, and experience.


Bohnert, A., Fredricks, J., and Randall, E. (2010). Capturing unique dimensions of youth organized activity involvement: Theoretical and methodological considerations. Review of Educational Research, 80(4), 576–610.

This study reviews the literature regarding current approaches to measuring participation in organized out-of-school-time (OST) activity settings and their effects on learners. The paper examines learners’ participation in terms of the dimensions of breadth, intensity, duration, and engagement, discussing the theoretical foundations and methodological approaches for each. The researchers note the dialectical nature of each of these dimensions. For example, participation is likely to become more intense (frequent and lengthy) as it endures over time, and as it endures over time it is more likely to intensify. This study provides a comprehensive overview of relevant measurement issues and approaches.


Fallik, O., Rosenfeld, S., & Eylon, B-S. (2013). School and out-of-school science: A model for bridging the gap. Studies in Science Education, 49(1), 69–91. doi:10.1080/03057267.2013.822166

This paper describes a model developed by education researchers seeking to bridge the gap between formal and informal learning contexts. The model matches organisational, cognitive, affective, and social-environmental aspects of learning with four key design principles to create 16 practical steps to help formal and informal educators communicate and cooperate more effectively.


Tran, N. A. (2011). The relationship between students’ connections to out-of-school experiences and factors associated with science learning. International Journal of Science Education, 33(12), 1625-1651.

How do students make connections between in-school and out-of school contexts? In this study involving the analysis of questionnaire responses of 1014 11th and 12th graders, the author found that out-of-school experiences are positively associated with the learning outcomes of science learning achievement, science interest, and self-efficacy. However, the analysis also showed that connections made by teachers to out-of-school experiences negatively correlated with student achievement.


Morehouse, H. (2009). Making the most of the middle: A strategic model for middle school afterschool programs. Afterschool Matters, 8, 1–10.

This paper summarizes key design elements for programs for middle-school-aged children, addressing issues of relationships, relevance, reinforcement, real-life projects, and rigor. The authors argue that these five components take into account the intellectual and emotional developmental needs of this age range.


Lyon, G., & Jafri, J. (2010). Project Exploration's Sisters4Science. Afterschool Matters, 11,15–22.

This article describes an afterschool science program targeting girls from communities underrepresented in the sciences. The authors argue for the need for such programs to build on research findings that are relevant to girl-specific programs, which they summarize in the article. This article provides a highly condensed overview of research findings and illustrates how the authors have applied these findings to their program design. It could be of interest to ISE educators seeking to design STEM programs for girls.


Clegg, T., & Kolodner, J. (2013). Scientizing and cooking: Helping middle-school learners develop scientific dispositions. Science Education, 98(1), 36–63. doi:10.1002/sce.21083

Participants in Kitchen Science Investigators, an afterschool program for middle school students, learn science through cooking, baking, and experimenting with recipes. In-depth case studies analyzed how and why girls begin to scientize, or see their worlds through a scientific lens, and how the program structure supported this shift.


Denner, J., Bean, S., & Martinez, J. (2009). The Girl Game Company: Engaging Latina girls in information technology. Afterschool Matters, 8, 26–35.

Although digital technology has become ubiquitous in our time, not everyone is afforded the same opportunities to pursue the fields of engineering, computer science, and advanced technology. This paper examines how an afterschool and summer program for middle school girls considered the roles of gender, culture, and youth development to increase the participation of Latinas in IT careers.


Douglas, J. A., & Katz, C. (2009). It’s all happening at the zoo: Children’s environmental learning after school. Afterschool Matters, 8, 36–45.

The authors of this article advocate for broad opportunities for young children to engage with the natural environment. In one out-of-school time (OST) program, called Animal Rescuers, children aged 10–12 participated in zoo visits, environmental education activities, and the creation of an online space. This project can give ISE educators insight into how zoos might connect children’s development with issues such as animal and environmental justice.




Viewing 1 - 10 of 32