Results for Families
Viewing 1 - 10 of 11

Maltese, A., Melki, C., & Weibke, H. (2014). The nature of experiences responsible for the generation and maintenance of interest in STEM. Science Education, 98(6), 937–962. doi:10.1002/sce.21132

Researchers Maltese, Melki, and Wiebke investigated when lasting interest in STEM is sparked and how it is maintained by comparing the remembrances of adults who did and did not persist in STEM. Both groups said that they became interested in STEM early, usually by Grade 6. Those who persisted in STEM were more likely than those who did not to say that they had always been interested in STEM. Parents and teachers were early influences for those who stayed in STEM fields.


Van Schijndel, T. J. P., Franse, R. K., & Raijmakers, M. E. J. (2010). The Exploratory Behavior Scale: Assessing young visitors’ hands-on behavior in science museums. Science Education, 94, 794–809.

The authors of this paper were interested in knowing how parents can support exploratory behaviors of their preschool-aged children at museum exhibits. They developed a quantitative instrument based on psychological literature on exploration and play in order to describe and quantify young children's increasing levels of exploration of their environment. They then tested the measurement tool with parents and their preschool-aged children to investigate what types of adult coaching would achieve high-level exploratory behavior at various exhibits.


Alexander, J. M., Johnson, K. E., & Kelley, K. (2012). Longitudinal analysis of the relations between opportunities to learn about science and the development of interests related to science. Science Education, 96(5), 763–786. doi:10.1002/sce.21018

This study considers the relationship between preschoolers’ early exposure to informal science experiences and their interest in science, with particular attention paid to gender differences. A longitudinal study of children ages 4 to 7 found that early science interest was a strong predictor of later parent-provided opportunities to engage in science learning.


Briseño-Garzón, A. (2013). More than science: Family learning in a Mexican science museum. Cultural Studies of Science Education, 8(2), 307–327. doi:10.1007/s11422-012-9477-0

Briseño-Garzón analyzed interviews with 20 families after they visited Universum Museo de las Ciencias. She concluded that the benefits of visiting a science museum are “much more than science,” including spending quality time together as a family, interacting with others, learning about local culture and history, learning from each other, and, of course, learning science.


Szechter, L. E., & Carey, E. J. (2009). Gravitating toward science: Parent-child interactions at a gravitational-wave observatory. Science Education, 93(5), 846–858.

This study looks at how characteristics of parent-child dyads, in combination with exhibit qualities, contribute to their interactions in a science center. Parent schooling, parent and child attitudes toward science, and the type of activity supported at the exhibits play a role in how they interact together. For ISE professionals, this study shows that parents exert a great deal of influence over what and how their children feel and learn about science.


Gutiérrez, K.D. , Baquedano‐López, P., & Tejada, C. (1999). Rethinking diversity: Hybridity and hybrid language practices in the third space, Mind, Culture, and Activity,6(4), 286-303. http://dx.doi.org/10.1080/10749039909524733

Within learning environments kids talk can often be seen as disruptive or off task. However, Gutierrez et al reframe how teachers can engage kids talk and welcome diverse activities and linguistic practices to deepen learning and participation. This article explores how teachers allow students to offer local knowledge, reorganize activities, and make meaning that can connect to the official curriculum in unexpected ways.


Allen, S., & Gutwill, J. P. (2010). Creating a program to deepen family inquiry at interactive science exhibits. Curator: The Museum Journal, 52(3), 289–306.

Many informal science institutions design exhibits to encourage inquiry and experimentation. But the authors of this paper suggest that often museums have found that visitors lack the expertise or confidence to engage in coherent inquiry. They report here on their efforts to equip visitors with key inquiry skills through providing families and groups with focused trainings on how to use inquiry-based exhibits.


Perera, L. D. H. (2014). Parents’ attitudes towards science and their children’s science achievement. International Journal of Science Education, 36(18), 3021–3041. doi:10.1080/09500693.2014.949900

Data from 15 countries suggest that positive parental attitudes toward science are associated with higher student achievement in science. The findings also indicate that socioeconomic status has no effect on the relationship between parental attitudes and student achievement: Poorer students benefit just as much from positive parental attitudes as richer students.


Falk, J. H., & Needham, M. D. (2011). Measuring the impact of a science center on its community. Journal of Research in Science Teaching, 48(1), 1–12. doi:10.1002/tea.20394

A comparison of survey data from 2000 and 2009 supports findings that the California Science Center in Los Angeles provides opportunities for public engagement in science that may not be supported by other education resources. Survey evidence correlates the community’s use of the science center with improvements in science engagement and science literacy.




Viewing 1 - 10 of 11