Results for Sociocultural
Viewing 1 - 10 of 18

Malone, K. R., & Barabino, G. (2009). Narrations of race in STEM research settings: Identity formation and its discontents. Science Education, 93(3), 485–510.

This study investigates specific challenges that students of color have in developing a personal identity related to science. The researchers examined how experiences in graduate school programs shaped the emergent identities of African-American women students in science and engineering. The study sheds light on the barriers cultural minority students might face in their pursuit of science in school and in careers, and suggests that educators might help to prepare students for these experiences.


Tran, N. A. (2011). The relationship between students’ connections to out-of-school experiences and factors associated with science learning. International Journal of Science Education, 33(12), 1625-1651.

How do students make connections between in-school and out-of school contexts? In this study involving the analysis of questionnaire responses of 1014 11th and 12th graders, the author found that out-of-school experiences are positively associated with the learning outcomes of science learning achievement, science interest, and self-efficacy. However, the analysis also showed that connections made by teachers to out-of-school experiences negatively correlated with student achievement.


Xu, J., Coats, L., & Davidson, M. (2012). Promoting student interest in science: The perspectives of exemplary African American teachers. American Educational Research Journal, 49(1), 124–154.

This study investigated what exemplary African American science teachers do to develop interest in science among low-income African American elementary students. The researchers found three interrelated approaches:
1) Having a genuine interest—in science, in teaching, and in students’ lives
2) Scaffolding students’ interest in science
3) Offering multiple standpoints—many ways for students to engage


Nasir, N. S., & Hand, V. (2008). From the court to the classroom: Opportunities for engagement, learning, and identity in basketball and classroom mathematics. Journal of the Learning Sciences, 17(2), 143–179. doi:10.1080/10508400801986108

This article discusses the potential for learner engagement in the contexts of a basketball team and a mathematics classroom. The qualitative analysis centers on three aspects of each context: access to the domain, the integral roles available to learners, and opportunities for self-expression.


Johnson, C. C. (2011). The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching, 48(2), 170–198.

This article reports on a case study of two middle school science teachers who took part in professional development designed to help them enact culturally relevant pedagogy in their classrooms. The long-term and community-oriented aspects of the professional development seemed to play a vital role in supporting the teachers’ success.


Nasir , N. S., Rosebery , A. S., Warren, B., & Lee, C. D . (2006). Learning as a cultural process: Achieving equity through diversity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 489–504). New York, NY: Cambridge University Press.

To create more equitable learning opportunities for students from marginalized communities, educators can design learning experiences that help young people connect their everyday interests and knowledge to academic content. Nasir et al. synthesized research on how students use sophisticated math in everyday practices like discussing basketball, playing dominoes, and selling candy. Then they explain how learning improves when varied student experiences are made relevant in informal and formal learning environments.


Lai, B., Slota, S. & Medin, D. (2012). "Our Princess Is in Another Castle. A Review of Trends in Serious Gaming for Education. Review of Educational Research, 82(296), 295-299.

Do video games have positive impacts on the academic K–12 curriculum? A literature review of more than 300 research articles finds minimal evidence that video games have any positive effects on mathematics and science achievement. From a situated-learning perspective, however, games may afford other benefits that measures on test scores do not record.


White, T., & Pea, R. (2011). “Distributed by design: On the promises and pitfalls of collaborative learning with multiple representations.” Journal of the Learning Sciences, 20(3), 489–547. doi:10.1080/10508406.2010.542700.

This article provides firm evidence, for formal and informal educators alike, that shared learning can be powerful and meaningful, if carefully considered. Findings from a study conducted in a summer middle school mathematics class suggest that when students are able to ask legitimate, authentic questions and share understanding about a common problem, their learning becomes truly “distributed by design.”


Eijck, M. V., & Claxton, N. X. (2009). Rethinking the notion of technology in education: Techno-epistemology as a feature inherent to human praxis. Science Education, 93, 218–232.

The authors of this paper use Cultural-Historical Activity Theory (CHAT) as a conceptual framework for understanding how technology is tied to culturally specific human practices, and what this means in an educational context. ISE professionals can use this paper to better understand the relationship between technology and science education and how technology as a cultural tool can represent inherent (privileged) epistemologies. The researchers in this study examined Reef Net technology of the WSÁNEĆ (Saanich) First Nation to demonstrate how cultural ways of knowing are embedded in the technology.


Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching, 38(3), 296–316.

In this seminal paper from 2001, the researcher posits sociocultural perspectives as a useful theoretical and methodological lens for examining science education. The paper examines the types of questions that are asked when applying a sociocultural lens to the science classroom and usefully references several different bodies of work within the sociocultural tradition. The research paper discusses the ways in which non-sociocultural perspectives have positioned science and the processes of learning science in ways that privilege dispassionate rationality in a way that may not be easily understood by many. In addition to its relevance for researchers of ISE settings, this paper is salient to the work of ISE educators who seek to teach science to learners by acknowledging and building on the learners’ own experiences, concerns, and communities.




Viewing 1 - 10 of 18