Results for NSF-funded
Viewing 1 - 10 of 59

Evans, M. A., Lopez, M., Maddox, D., Drape, T., & Duke, R. (2014). Interest-driven learning among middle school youth in an out-of-school STEM studio. Journal of Science Education Technology, 23(5), 624–640. doi:10.1007/s10956-014-9490-z

In this paper investigates how intentionally designed features of an out-of-school time program,< a href=> Studio STEM, influenced middle school youths’ engagement in their learning. The authors took a connected learning approach, using new media to support peer interaction and engagement with an engineering design challenge in an open and flexible learning environment.

Esmonde, I. (2009). Mathematics learning in groups: Analyzing equity in two cooperative activity structures. Journal of the Learning Sciences, 18(2), 247–284.

This article discusses the design and conditions of high school mathematics activities that aim to distribute opportunities to learn to all students. Of particular interest to ISE educators is the analysis of how some ostensibly equitable group activities may shut down equal participation. Also of interest is the theoretical discussion of the relationship between opportunities to productively participate in mathematical activities and the development of positive mathematical learning identities.

Gutwill, J. P., & Allen, S. (2012). Deepening students’ scientific inquiry skills during a science museum field trip. Journal of the Learning Sciences, 21(1), 130–181. doi:10.1080/10508406.2011.555938

This article describes how two inquiry games promoted student science skills in a museum setting while minimizing demands on teachers, fostering collaboration, and incorporating chaperones. Students who played these games engaged in more scientific inquiry behaviors than did students in control groups.

Malone, K. R., & Barabino, G. (2009). Narrations of race in STEM research settings: Identity formation and its discontents. Science Education, 93(3), 485–510.

This study investigates specific challenges that students of color have in developing a personal identity related to science. The researchers examined how experiences in graduate school programs shaped the emergent identities of African-American women students in science and engineering. The study sheds light on the barriers cultural minority students might face in their pursuit of science in school and in careers, and suggests that educators might help to prepare students for these experiences.

Medin, D. L., & Bang, M. (2014). The cultural side of science communication. Proceedings of the National Academy of Sciences of the United States of America, 111, 13621–13626. doi:10.1073/pnas.1317510111

What do images communicate about humans’ place in nature? Medin and Bang posit that the artifacts used to communicate science—including words, photographs, and illustrations—commonly reflect the cultural orientations of their creators. The authors argue that Native Americans traditionally see themselves as part of nature and focus on ecological relationships, while European Americans perceive themselves as outside of nature and think in terms of taxonomic relationships.

Ryoo, J. J., Margolis, J., Lee, C. H., Sandoval, C.D.M., & Goode, J. (2013). Democratizing computer science knowledge: Transforming the face of computer science through public high school education. Learning, Media, and Technology, 38(2), 161–181.

Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.

Sandoval, W. (2014). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23, 18–36. doi:10.1080/10508406.2013.778204

Design-based research (DBR) is a method for testing educational theories while simultaneously studying the process of creating and refining educational interventions. In this article, Sandoval proposes “conjecture mapping” as a technique to guide DBR processes. Conjecture mapping responds to critiques that DBR lacks clear standards and methodological rigor.

Hudicourt-Barnes, J. (2003). The use of argumentation in Haitian Creole science classrooms. Harvard Educational Review, 73(1), 73–93.

This article uses critical ethnography and analysis of student talk to refute claims that Haitian children are less than fully engaged in science classrooms. Josiane Hudicourt-Barnes provides examples from a bilingual science classroom to explain cultural differences in language and in students’ understanding of scientific argumentation. Hudicourt-Barnes posits that the Creole talk style of bay odyans is naturally scientific because it uses logic in argumentation. Ultimately, Hudicourt-Barnes proposes, cultural ways of thinking and speaking are good bases for science talk, particularly for argumentation.

Cobb, P., Zhao, Q., & Dean, C. (2009). Conducting design experiments to support teachers' learning: A reflection from the field. Journal of the Learning Sciences, 18(2), 165–199.

This article reports the results of a design research experiment in professional development for teachers of middle school mathematics. The authors report on how they developed their programs to account for three underlying conceptual challenges to their efforts: (1) the institutional contexts that teachers worked in, (2) the ways in which the learning developed in and through the community of practice, and (3) the relationship between teachers' learning in the program and teachers' teaching in their classrooms. Especially because of the different institutional cultures found in ISE versus school settings, this article could be highly informative for designing ISE-based professional development programs for teachers.

Viewing 1 - 10 of 59