Results for Language
Viewing 10

Santau, A.O., Secada, W., Maerten-Rivera, J., Cone, N. & Lee, O. (2010). US Urban elementary teachers’ knowledge and practices in teaching science to English language learners: Results from the first year of a professional development intervention. International Journal of Science Education, 32(15), 2007–2032.

Teachers of English language learners face the dual challenge of helping students to learn the academic content of science and to acquire English language proficiency. Elementary teachers, meanwhile, face the additional challenge of responding to new teaching requirements outlined within reform initiatives with an often limited understanding of science and its practices. The study reported in this paper sought to examine these issues (and also a comparison of teacher’s knowledge and practice between grade levels) as part of the analysis of a long-term professional development initiative for urban elementary schools. The professional development (PD) sought to enhance teacher knowledge of science content, teaching practices, inquiry processes, and teaching practices in science to support English language development.


Howes, E. V., Lim, M., & Campos, J. (2009). Journeys into inquiry-based elementary science: Literacy practices, questioning, and empirical study. Science Education, 93(2), 189–217.

Combining science and literacy is becoming a common teaching strategy, which builds on the importance of professional scientists’ use of reading, writing, and speaking in their work. This paper consists of descriptions of efforts of three elementary teachers to teach literacy through science. The authors’ purpose was to theorize how and why to integrate literacy practices with scientific inquiry, to provide examples for educators, and to provide considerations for implementation, all of which may also be useful for informal educators.


Hudicourt-Barnes, J. (2003). The use of argumentation in Haitian Creole science classrooms. Harvard Educational Review, 73(1), 73–93.

This article uses critical ethnography and analysis of student talk to refute claims that Haitian children are less than fully engaged in science classrooms. Josiane Hudicourt-Barnes provides examples from a bilingual science classroom to explain cultural differences in language and in students’ understanding of scientific argumentation. Hudicourt-Barnes posits that the Creole talk style of bay odyans is naturally scientific because it uses logic in argumentation. Ultimately, Hudicourt-Barnes proposes, cultural ways of thinking and speaking are good bases for science talk, particularly for argumentation.


Varelas, M., Pappas, C. C., Tucker-Raymond, E., Kane, J., Hankes, J., Ortiz, I., & Keblawe-Shamah, N. (2010). Drama activities as ideational resources for primary-grade children in urban science classrooms. Journal of Research in Science Teaching, 47(3), 302-325.

ISE professionals can use this article as a source of ideas to guide thinking about what makes a successful dramatic experience for learners. Alternative, physical ways to engage science learners are often the most challenging to envision, effectively execute, and articulate how learning is fostered. The researchers and teachers in this study incorporated drama into science lessons to bring in fun, creativity, thinking, and imagination as part of classroom learning, and showed how the young students collectively represented the scientific world more accurately.


Johnson, C. C. (2011). The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching, 48(2), 170–198.

This article reports on a case study of two middle school science teachers who took part in professional development designed to help them enact culturally relevant pedagogy in their classrooms. The long-term and community-oriented aspects of the professional development seemed to play a vital role in supporting the teachers’ success.


Rincke, K. (2011). It’s rather like learning a language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33(2), 229–258.

This study reports on how high school students use scientifically correct language to articulate the concept of ‘force’. Although the analysis is somewhat complex, the importance of this study is its research of how the students engage with scientific concepts and language, and moreover, how they use and apply it.


Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286.

Teachers’ and learners’ gestures while giving explanations in mathematics can be categorized into three types, revealing their cognitive nature and communicative purpose: pointing reflects a grounding in the physical environment, representational gestures reveal mental simulations of action and perception, and metaphoric gestures reveal conceptual metaphors grounded in the physical human experience. Informal educators should reflect on their own gestures and those of learners, considering what they may contribute to greater learner understanding.


Pramling, N. (2009) The role of metaphor in Darwin and the implications for teaching evolution. Science Education, 93, 535–547.

In explaining complex scientific concepts, metaphors are often used. However, the types of metaphors can have an influence on our understanding of the scientific concepts. Pramling considers the metaphors Darwin used to explain evolution and the implications of those metaphors in learning evolutionary theory. He argues that his use of particular metaphors has complicated the ways in which people understand and reason about evolution, partly because they require a complex understanding of time that is difficult to grasp.


van der Veen, J. (2012). Draw your physics homework? Art as a path to understanding in physics teaching. American Educational Research Journal, 49(2), 356–407.

This paper describes the potential benefits of incorporating art into physics education. Drawing and sculpture provide a way of understanding abstract concepts. The process may also allow educators to “humanize” physics and thus make it more accessible to historically marginalized groups.


Dorion, K.R. (2009). Science through drama: A multiple case exploration of the characteristics of drama activities used in secondary science lesson. International Journal of Science Education, 31(16), 2247–2270.

Dorion’s research, exploring the use of drama in science teaching, puts forth the concept of mime and role-play to help students to explore abstract scientific models. In addition, drama may support visualization of complex models. Drama can also change the dynamics within classroom talk and support a sense of community amongst students fostered by collaboration, social interaction, and fun.