Results for Scientific reasoning
Viewing 1 - 10 of 20

Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498. doi:10.1002/sce.20278

In order to broaden the conceptualizations of argument in science education, Bricker and Bell draw from diverse fields: the sociology of science, the learning sciences, and cognitive science to help practitioners think of new ways to bring argumentation into learning spaces while expanding what counts as scientific argument.


Byrne, J., Ideland, M., Malmberg, C., & Grace, M. (2014). Climate change and everyday life: Repertoires children use to negotiate a socio-scientific issue. International Journal of Science Education, 36(9), 1491–1509. doi:10.1080/09500693.2014.891159

The premise underlying this paper by Byrne, Ideland, Malmberg, and Grace is that citizenship should not be regarded as a privilege — and responsibility — only of adulthood. Children, too, can be actively engaged as citizens. In their study, Byrne and colleagues examined the interpretive repertoires of children engaged in discussions about socioscientific issues. They found that the children used productive argumentation to negotiate complex issues and propose solutions.


Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2010). Finding out how they find it out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education, 32(15), 2033–2053.

A study contrasting scientific reasoning skills of students with limited knowledge of the domain against more expert groups found little difference in nature of hypothesising and experimentation, but their lack of domain knowledge hindered non-experts' abilities to develop and test models. Findings highlight the need for support to understand models and organize knowledge.


Sharples, M., Scanlon, E., Ainsworth, S., Anastopoulou, S., Collins, T., Crook, C., Jones, A., Kerawalla, L., Littleton, K., Mulholland, P., & O’Malley, C. (2014). Personal inquiry: Orchestrating science investigations within and beyond the classroom. Journal of the Learning Sciences. Doi: 10.1080/10508406.2014.944642

Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.


Kallery, M., Psillos, D., & Tselfes, V. (2009). Typical didactical activities in the Greek early-years science classroom: Do they promote science learning? International Journal of Science Education, 31(9), 1187—1204

In this paper the analysis of science lessons in early-years classrooms shows that the lessons did not promote scientific investigation or make connections between the ideas involved and the material world. Teacher directed scientific activities observed had limited value in terms of scientific inquiry and consequently did not foster the development of ideas or support the formation of hypotheses. The paper raises questions about how to best promote scientific practices, including through continuing professional development.


Hampp, C., & Schwan, S. (2014). The role of authentic objects in museums of the history of science and technology: Findings from a visitor study. International Journal of Science Education, Part B: Communication and Public Engagement. doi:10.1080/21548455.2013.875238

Objects define museums: The collection, maintenance, and display of objects are the central functions of museum practice. But does it matter whether the objects on display are authentic? Investigators Hampp and Schwan's findings suggest that visitors learn as much from non-authentic objects as from authentic ones, but that aspects of authenticity shape visitors’ emotional experiences of museum objects.


Kirch, S. A. (2009). Identifying and resolving uncertainty as a mediated action in science: A comparative analysis of the cultural tools used by scientists and elementary science students at work. Science Education, 95, 308–335.

This study compares scientific practices in a research laboratory and a second grade classroom. Through conversation analysis, the author found that in both settings similar processes were followed to establish a mutual understanding about what was seen, done and concluded in a collaborative investigation. The author shows how “mutual understanding” differs from “agreement,” and suggests ways to structure science inquiry activities that can engage young children with the tentative nature of science while helping them to resolve discrepant procedures, observations or interpretations.


Brown, B. A., & Kloser, M. (2009). Conceptual continuity and the science of baseball: Using informal science literacy to promote students’ science learning. Cultural Studies of Science Education, 4(4), 875–897.

The formal introduction of learners to scientific phenomena is accompanied by the need to reconcile what they are being taught in classrooms with their informal or pre-existing conceptualizations of the same phenomena. Reconciled formal and informal conceptualizations represent what the authors of this study refer to as “conceptual continuity,” which, they argue, is an important asset for science educators seeking to support students’ conceptual development. In this paper, authors studied the ways in which high-school baseball players expressed their understanding of how curveballs curve using both scientific and everyday language. This study will be of use and interest to ISE educators, who seek to support students’ conceptual continuities across different settings.


Evans, M. S. (2012). Supporting science: Reasons, restrictions, and the role of religion. Science Communication, 34(3), 334–372. doi:10.1177/1075547011417890

Would religious Americans impose a ten-year moratorium on scientific research? Of 62 interviewees, 60 responded negatively. Interestingly, respondents employed reasoning skills alongside their religious beliefs, complicating the common belief that scientific and religious values cannot co-exist in the same person.




Viewing 1 - 10 of 20