Results for Culture
Viewing 1 - 10 of 19

Nasir, N. S., & McKinney de Royston, M. (2013). Power, identity, and mathematical practices outside and inside school. Journal for Research in Mathematics Education, 44(1), 264–287.

This article discusses intellectual activities in African American culture that privilege mathematical thinking. The mathematical thinking in these activities is often not valued in the classroom. The authors argue for a shift from a deficit view of the cultural activities of non-dominant groups to an additive perspective that values the cultural wealth of these groups and uses that wealth to support student identity and learning.

Van Eijck, M. & Roth, W.-M. (2009). Authentic science experiences as a vehicle to change students’ orientations toward science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 4, 611–638.

This study aims to answer two questions important to informal science learning: What is “authentic”? And, why do we want students to have authentic science learning experiences? Using ethnographic methods, the authors developed a case study over the course of one year of an Aboriginal student, Brad, who participated in a scientific internship program that included both nature conservation and laboratory work. This study analyzes how Brad’s cultural identity interacted, influenced, and hybridized with the scientific and other practices he participated in during his internship. The paper will be of interest to ISE educators exploring how program experiences interact with identity to encourage expanded participation in STEM.

Malone, K. R., & Barabino, G. (2009). Narrations of race in STEM research settings: Identity formation and its discontents. Science Education, 93(3), 485–510.

This study investigates specific challenges that students of color have in developing a personal identity related to science. The researchers examined how experiences in graduate school programs shaped the emergent identities of African-American women students in science and engineering. The study sheds light on the barriers cultural minority students might face in their pursuit of science in school and in careers, and suggests that educators might help to prepare students for these experiences.

Maulucci, M. (2010). Resisting the marginalization of science in an urban school: Coactivating social, cultural, material and strategic resources. Journal of Research in Science Teaching, 47(7), 840–860.

Education reform efforts often focus on material supplies and teacher knowledge of science, but this article points out additional constraints that teachers face within their schools and how the teachers from one middle school overcame them. These constraints have implications for what the researcher calls “inertial forces” that may derail social justice efforts. An awareness of these issues can help ISE educators in their efforts to design and lead professional development programs that support teachers.

Hudicourt-Barnes, J. (2003). The use of argumentation in Haitian Creole science classrooms. Harvard Educational Review, 73(1), 73–93.

This article uses critical ethnography and analysis of student talk to refute claims that Haitian children are less than fully engaged in science classrooms. Josiane Hudicourt-Barnes provides examples from a bilingual science classroom to explain cultural differences in language and in students’ understanding of scientific argumentation. Hudicourt-Barnes posits that the Creole talk style of bay odyans is naturally scientific because it uses logic in argumentation. Ultimately, Hudicourt-Barnes proposes, cultural ways of thinking and speaking are good bases for science talk, particularly for argumentation.

Xu, J., Coats, L., & Davidson, M. (2012). Promoting student interest in science: The perspectives of exemplary African American teachers. American Educational Research Journal, 49(1), 124–154.

This study investigated what exemplary African American science teachers do to develop interest in science among low-income African American elementary students. The researchers found three interrelated approaches:
1) Having a genuine interest—in science, in teaching, and in students’ lives
2) Scaffolding students’ interest in science
3) Offering multiple standpoints—many ways for students to engage

Berti, A. E., Toneatti, L., & Rosati, V. (2010). Children's conceptions about the origin of species: A study of Italian children's conceptions with and without instruction. Journal of the Learning Sciences, 19(4), 506–538.

This study examines how early elementary school-aged children develop theories of the origin of species. It may interest ISE educators who are developing strategies for engaging their audiences with theories and processes of evolution. The article provides background on the research literature about teaching and learning of evolution. The results of this study suggest that direct instruction or interactions with Darwinian models, even at a young age, can support children's understanding of evolutionary theory, and may be as important as developmental or cultural concerns already documented in the literature.

Denner, J., Bean, S., & Martinez, J. (2009). The Girl Game Company: Engaging Latina girls in information technology. Afterschool Matters, 8, 26–35.

Although digital technology has become ubiquitous in our time, not everyone is afforded the same opportunities to pursue the fields of engineering, computer science, and advanced technology. This paper examines how an afterschool and summer program for middle school girls considered the roles of gender, culture, and youth development to increase the participation of Latinas in IT careers.

Nasir, N. S., & Hand, V. (2008). From the court to the classroom: Opportunities for engagement, learning, and identity in basketball and classroom mathematics. Journal of the Learning Sciences, 17(2), 143–179. doi:10.1080/10508400801986108

This article discusses the potential for learner engagement in the contexts of a basketball team and a mathematics classroom. The qualitative analysis centers on three aspects of each context: access to the domain, the integral roles available to learners, and opportunities for self-expression.

Tan, E., Calabrese Barton, A., Kang, H., & O’Neill, T. (2013). Desiring a career in STEM-related fields: How middle school girls articulate and negotiate identities-in-practice in science. Journal of Research in Science Teaching, 50(10), 1143–1179. doi:10.1002/tea.21123

This article examines middle school girls’ participation in school-day science classes and out-of-school time science clubs to understand the girls’ identification with and relationship to science. Looking at the girls’ science experiences across settings, researchers compared how the identities developed from these experiences supported or worked against the girls’ future trajectories in STEM.

Viewing 1 - 10 of 19