Results for Cyberlearning
Viewing 6

Lee, S.W-Y., Tsai, C-C., Wu, Y-T., Tsai, M-J., Liu, T-C., Hwang F-K., Chang, C-Y. (2011). Internet-based science learning: A review of journal publications. International Journal of Science Education, 33(14), 1893–1925.

The Internet now plays an important role in education. This paper reviews the current literature on Internet-based science learning environments, focusing in particular on the characteristics of learners that affect the extent of science learning. It offers a useful resource for ISE practitioners who provide online science learning.


Denner, J., Bean, S., & Martinez, J. (2009). The Girl Game Company: Engaging Latina girls in information technology. Afterschool Matters, 8, 26–35.

Although digital technology has become ubiquitous in our time, not everyone is afforded the same opportunities to pursue the fields of engineering, computer science, and advanced technology. This paper examines how an afterschool and summer program for middle school girls considered the roles of gender, culture, and youth development to increase the participation of Latinas in IT careers.


Watermeyer, R. (2010). Social network science: pedagogy, dialogue, deliberation. Journal of Science Communication, 9(1), 1–9.

ISE professionals can use this study as a guide to help them in understanding the uses of social networking sites (SNS). The author maintains that SNS provide a space that allows the public to become better acquainted with the work of scientists, stimulating transparency and accountability, and that encourages the public to become active contributors to scientific research and debate.


Lai, B., Slota, S. & Medin, D. (2012). "Our Princess Is in Another Castle. A Review of Trends in Serious Gaming for Education. Review of Educational Research, 82(296), 295-299.

Do video games have positive impacts on the academic K–12 curriculum? A literature review of more than 300 research articles finds minimal evidence that video games have any positive effects on mathematics and science achievement. From a situated-learning perspective, however, games may afford other benefits that measures on test scores do not record.


Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372. doi:10.1002/sce.10130

The past 50 years have seen a change in how science is perceived, from an “unproblematic accumulation of facts that describe the world” to a much messier enterprise involving building and revising models and theories. In an effort to bring this new understanding to science teaching and learning, this foundational article presents a conceptual framework of how inquiry can be driven by cognitive tools that support disciplinary knowledge. The authors use rubrics to help students gain a deeper understanding of their work and of the inquiry process.


Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools, and challenges. International Journal of Science Education, 32(3), 349–377.

This article provides a summary of computer tools and environments designed to support collaborative inquiry learning. It offers ISE practitioners an informative introduction to computer-based tools and activities currently available in classrooms and, by identifying the ways in which such tools support inquiry, may help readers to reflect on how their own activities support inquiry.