Results for Professional development
Viewing 1 - 10 of 23

Santau, A.O., Secada, W., Maerten-Rivera, J., Cone, N. & Lee, O. (2010). US Urban elementary teachers’ knowledge and practices in teaching science to English language learners: Results from the first year of a professional development intervention. International Journal of Science Education, 32(15), 2007–2032.

Teachers of English language learners face the dual challenge of helping students to learn the academic content of science and to acquire English language proficiency. Elementary teachers, meanwhile, face the additional challenge of responding to new teaching requirements outlined within reform initiatives with an often limited understanding of science and its practices. The study reported in this paper sought to examine these issues (and also a comparison of teacher’s knowledge and practice between grade levels) as part of the analysis of a long-term professional development initiative for urban elementary schools. The professional development (PD) sought to enhance teacher knowledge of science content, teaching practices, inquiry processes, and teaching practices in science to support English language development.


Kind, V. (2009). Pedagogical content knowledge in science education: Perspectives and potential for progress. Studies in Science Education, 45(2), 169–204.

Debate surrounding the definition of pedagogical content knowledge (PCK) has limited its use in guiding teacher practice and teacher education. To help trainees acquire the unique skills of expert teachers in translating content for learners, this paper argues that an explicit focus on PCK (rather than an emphasis on subject matter knowledge) is needed.


You for Youth (2010). Right time, right place: Building an online learning community for afterschool practitioners. Afterschool Matters 10, 8–14.

You for Youth (www.Y4Y.ed.gov) is a learning community and website started in 2008 for the grantees of the 21st Century Community Learning Centers (21st CCLC), a U.S. Department of Education program that began in 1998 to support out-of-school time programs. The Y4Y project team describes how this project started as a response to the need for low-cost professional development in a wide range of skills, including conflict management, student engagement, and building relationships with the community. Inputs from practitioners, policymakers, evaluators, and other stakeholders were used in this project.


Maulucci, M. (2010). Resisting the marginalization of science in an urban school: Coactivating social, cultural, material and strategic resources. Journal of Research in Science Teaching, 47(7), 840–860.

Education reform efforts often focus on material supplies and teacher knowledge of science, but this article points out additional constraints that teachers face within their schools and how the teachers from one middle school overcame them. These constraints have implications for what the researcher calls “inertial forces” that may derail social justice efforts. An awareness of these issues can help ISE educators in their efforts to design and lead professional development programs that support teachers.


van Driel, J. H., Meirink, J. A., van Veen, K., & Zwart, R. C. (2012). Current trends and missing links in studies on teacher professional development in science education: A review of design features and quality of research. Studies in Science Education, 48(2), 129–160. doi:10.1080/03057267.2012.738020

This review paper summarises the current state of research on professional development in science education. It offers a number of insights and recommendations for the many informal science institutions that offer teacher professional development courses.


Brand, B. R. & Moore, S. J. (2011). Enhancing teachers’ application of inquiry-based strategies using a constructivist sociocultural professional development model. International Journal of Science Education, 33(7), 889–913. doi:10.1080/09500691003739374

This paper reports on a two-year schoolwide professional development initiative designed to enhance teachers’ pedagogical skills in inquiry-based science instruction. The programme emphasised the importance of time for reflection and the role of collaboration among participating teachers to ensure sustained change in their beliefs and practice.


Cobb, P., Zhao, Q., & Dean, C. (2009). Conducting design experiments to support teachers' learning: A reflection from the field. Journal of the Learning Sciences, 18(2), 165–199.

This article reports the results of a design research experiment in professional development for teachers of middle school mathematics. The authors report on how they developed their programs to account for three underlying conceptual challenges to their efforts: (1) the institutional contexts that teachers worked in, (2) the ways in which the learning developed in and through the community of practice, and (3) the relationship between teachers' learning in the program and teachers' teaching in their classrooms. Especially because of the different institutional cultures found in ISE versus school settings, this article could be highly informative for designing ISE-based professional development programs for teachers.


McGregor, D. (2012). Dramatising science learning: Findings from a pilot study to re-invigorate elementary science pedagogy for five- to seven-year olds. International Journal of Science Education, 34(8), 1145–1165.

Rather than enacting imaginative approaches, some teachers tend to engage in safe but unexciting transmission of science knowledge. This study examined a professional development programme wherein primary school teachers learned the skills and approaches of Dramatic Science. The findings indicate that the programme met its aim of helping teachers become more confident and creative in supporting children’s science learning.


Fleer, M. (2009). Supporting scientific conceptual consciousness of learning in a ‘roundabout way’ in play-based contexts. International Journal of Science Education, 31(8) 1069–1089.

Primary and early childhood teachers are generally regarded as lacking competence and confidence in teaching science. But rather than pointing the finger at teachers, this paper suggests that the prevailing philosophy of pedagogy may be to blame.


Johnson, C. C. (2011). The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching, 48(2), 170–198.

This article reports on a case study of two middle school science teachers who took part in professional development designed to help them enact culturally relevant pedagogy in their classrooms. The long-term and community-oriented aspects of the professional development seemed to play a vital role in supporting the teachers’ success.




Viewing 1 - 10 of 23