Relating Research to Practice has identified a limited set of Hot Topics representing pressing issues facing the ISE field. Download synthesis papers or browse research briefs related to these topics.

All research briefs tagged to Youth and STEM Learning
Viewing 1 - 10 of 17

Oliver, M. (2011). Towards an understanding of neuroscience for science educators. Studies in Science Education, 47(2), 211–235.

In this review, Oliver calls for greater cross-pollination between neuroscience research and educational practice. She argues that a richer understanding of the brain can dispel educational myths—and indeed uses research data in this paper to do so. She explores ways in which brain science can not only inform emerging theories of learning and teaching but also inspire effective educational interventions.

Gutwill, J. P., & Allen, S. (2012). Deepening students’ scientific inquiry skills during a science museum field trip. Journal of the Learning Sciences, 21(1), 130–181. doi:10.1080/10508406.2011.555938

This article describes how two inquiry games promoted student science skills in a museum setting while minimizing demands on teachers, fostering collaboration, and incorporating chaperones. Students who played these games engaged in more scientific inquiry behaviors than did students in control groups.

Byrne, J., Ideland, M., Malmberg, C., & Grace, M. (2014). Climate change and everyday life: Repertoires children use to negotiate a socio-scientific issue. International Journal of Science Education, 36(9), 1491–1509. doi:10.1080/09500693.2014.891159

The premise underlying this paper by Byrne, Ideland, Malmberg, and Grace is that citizenship should not be regarded as a privilege — and responsibility — only of adulthood. Children, too, can be actively engaged as citizens. In their study, Byrne and colleagues examined the interpretive repertoires of children engaged in discussions about socioscientific issues. They found that the children used productive argumentation to negotiate complex issues and propose solutions.

Hudicourt-Barnes, J. (2003). The use of argumentation in Haitian Creole science classrooms. Harvard Educational Review, 73(1), 73–93.

This article uses critical ethnography and analysis of student talk to refute claims that Haitian children are less than fully engaged in science classrooms. Josiane Hudicourt-Barnes provides examples from a bilingual science classroom to explain cultural differences in language and in students’ understanding of scientific argumentation. Hudicourt-Barnes posits that the Creole talk style of bay odyans is naturally scientific because it uses logic in argumentation. Ultimately, Hudicourt-Barnes proposes, cultural ways of thinking and speaking are good bases for science talk, particularly for argumentation.

Archer, L., Dewitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012) ‘Balancing acts’: Elementary school girls’ negotiations of femininity, achievement, and science. Science Education, 96(6), 967–989. doi:10.1002/sce.21031

This paper explores how science-aspiring girls balance their aspirations and achievement with societal expectations of femininity. In-depth interviews revealed two models that the girls tended to follow, termed feminine scientist or bluestocking scientist, and the precarious nature of both of these identities. Archer et al. suggest ways that practitioners can better support girls in their balancing acts.

Laubach, T. A., Crofford, G. D., & Marek, E. A. (2012). Exploring Native American students’ perceptions of scientists. International Journal of Science Education, 34(11), 1769–1794.

Some say that if we could dismantle negative stereotypes of scientists, minority students would be more likely to consider careers in STEM. But precisely what views do minority students hold? In this study, researchers examined the perceptions of 133 Native American students by analysing students’ drawings of scientists and their accompanying written explanations.

Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48(1), 71–93.

This article makes a case for providing multiple types of hands-on resources to support learner inquiry. More specifically, a computer simulation of an electric circuit complemented work with a real circuit to support learners’ conceptual development. When learners had the opportunity to use both simulated and real circuits, less structured guidance seemed to benefit the inquiry process.

Bricker, L. A., Reeve, S., & Bell, P. (2014). ‘She has to drink blood of the snake’: Culture and prior knowledge in science/health education. International Journal of Science Education, 36(9). 1457 – 1475. doi: 10.1080/09500693.2013.827817

This paper’s findings illustrate the claim that young people’s prior knowledge cannot be separated from the cultural context in which it is situated. Using examples from a longitudinal ethnographic study of 13 children, the authors Bricker and Reeve argue that, in order to understand young people’s thinking and practice, we need to understand the social and cultural systems in which their thinking is embedded.

Hundal, S., Levin, D. M., & Keselman, A. (2014). Lessons of research-teacher co-design of an environmental health afterschool club curriculum. International Journal of Science Education, 36(9), 1510–1530. doi:10.1080/09500693.2013.844377

This Hundal and Keselman paper describes the design of an afterschool curriculum aimed at supporting argumentation skills in the context of environmental health. It frankly describes the tensions between the teachers and researchers in the co-design of the project. It acknowledges differences in perspectives in a way that may guide the co-design efforts of others.

Bang, M., Warren, B., Rosebery, A. S., & Medin, D. (2013). Desettling expectations in science education. Human Development, 55(5¬–6), 302–318.

Bang, Warren, Rosebery, and Medin explore empirical work with students from non-dominant communities to support teaching science as a practice of inquiry and understanding, not as a “settled” set of ideas and skills to learn.

Viewing 1 - 10 of 17