Results for Journal of Research in Science Teaching
Viewing 1 - 10 of 46

Swanson, L. H., Bianchini, J. A., & & Lee, J. S. (2014). Engaging in argument and communicating information: A case study of English language learners and their science teacher in an urban high school. Journal for Research in Science Teaching, 51(1), 31–64. doi:10.1002/tea.21124

In this study, the researchers investigated opportunities and challenges English language learners (ELLs) faced while learning the scientific practices of argumentation and communication of findings (NGSS practices 7 and 8; NGSS Lead States, 2013). Specifically, they asked how the teacher engaged ELLs in argumentation and communication and how the ELLs actually used these practices.

Sadeh, I. & Zion, M. (2009). The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 46, 1137–1160.

In this study, researchers compared two different forms of inquiry, guided and open. The authors found that open inquiry was more effective than guided inquiry in building students' understanding about scientific procedures. For example, students engaged in open inquiry gained insights into the ways that scientists need to adjust their studies as new information or problems arise. The findings of this research will be of interest to ISE educators who are integrating inquiry-based instruction into their programs.

Bouillion, L. M., & Gomez, L. M. (2001). Connecting school and community with science learning: Real world problems and school-community partnerships as contextual scaffolds. Journal of Research in Science Teaching, 38(8), 878–898. doi:10.1002/tea.1037

To improve science education for culturally and linguistically diverse students, schools and communities can create “mutual benefit partnerships” to identify and address local problems. Through the example of the Chicago River Project, Bouillion and Gomez illustrate how such partnerships can connect formal learning contexts with the rich ways communities experience science outside of school.

Maulucci, M. (2010). Resisting the marginalization of science in an urban school: Coactivating social, cultural, material and strategic resources. Journal of Research in Science Teaching, 47(7), 840–860.

Education reform efforts often focus on material supplies and teacher knowledge of science, but this article points out additional constraints that teachers face within their schools and how the teachers from one middle school overcame them. These constraints have implications for what the researcher calls “inertial forces” that may derail social justice efforts. An awareness of these issues can help ISE educators in their efforts to design and lead professional development programs that support teachers.

Feinstein, N. W., & Meshoulam, D. (2013). Science for what public? Addressing equity in American science museums and science centers. Journal of Research in Science Teaching, 51(3), 368–394. doi:10.1002/tea.21130

Feinstein and Meshoulam’s study examines the nature of equity work in museums and science centres across the U.S. Based on 32 interviews with leaders from 15 informal science education organisations, the authors identified two different perspectives, client and cooperative, each with its own strengths and implications for informal science education.

Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68–94. doi:10.1002/tea.20446

The new standards posit that “scientific argumentation,” in which students use data to argue from evidence, is a key practice for student science learning. However, a mismatch in expectations about the purpose of classroom discussions can inhibit productive forms of argumentation. Berland and Hammer compare forms of class discussions to identify how best to support students’ engagement in argumentation.

Mallya, A., Mensah, F. M., Contento, I. R., Koch, P. A., & Calabrese Barton, A. (2012). Extending science beyond the classroom door: Learning from students’ experiences with the Choice, Control, and Change (C3) curriculum. Journal of Research in Science Teaching, 49(2), 244–269.

This paper explores how a school-day science and nutrition curriculum, Choice, Control and Change (C3), shaped student thinking, decision making, and actions outside the classroom. The curriculum taught health science content and engaged students in activities focused on analyzing and changing their personal health choices.

Jones, M. G., Taylor, A. R., & Broadwell, B. (2009). Concepts of scale held by students with visual impairment. Journal of Research in Science Teaching, 46(5), 506–519.

Size and scale are important concepts across disciplines, particularly with recent advances at the very large and very small ends of the continuum, which are also hard to teach and understand. Since not much is known about how people develop a sense of linear size and scale, particularly for children with visual impairments, the authors compared their accuracy to that of normal students, as well as examined their experiences learning about size in- and out-of-school. The authors speculate that educators may find students with visual impairments to have unique accessibility to concepts of the very large and small scales of science.

Varelas, M., Pappas, C. C., Tucker-Raymond, E., Kane, J., Hankes, J., Ortiz, I., & Keblawe-Shamah, N. (2010). Drama activities as ideational resources for primary-grade children in urban science classrooms. Journal of Research in Science Teaching, 47(3), 302-325.

ISE professionals can use this article as a source of ideas to guide thinking about what makes a successful dramatic experience for learners. Alternative, physical ways to engage science learners are often the most challenging to envision, effectively execute, and articulate how learning is fostered. The researchers and teachers in this study incorporated drama into science lessons to bring in fun, creativity, thinking, and imagination as part of classroom learning, and showed how the young students collectively represented the scientific world more accurately.

Bricker, L. A., & Bell, P. (2014). “What comes to mind when you think of science? The perfumery!”: Documenting science-related cultural learning pathways across contexts and timescales. Journal of Research in Science Teaching, 51(3), 260–285. doi:10.1002/tea.21134

Current science education reforms emphasize the ways in which students’ scientific practices, such as experimenting, collecting data, and interpreting results, develop over time. Bricker and Bell suggest that practices develop not only over time, but also across multiple settings and opportunities. Their study shows how, over several years, one youth’s identification with science was shaped by many everyday moments, social configurations, and collaborators.

Viewing 1 - 10 of 46