Results for Activism
Viewing 9

Ryoo, J. J., Margolis, J., Lee, C. H., Sandoval, C.D.M., & Goode, J. (2013). Democratizing computer science knowledge: Transforming the face of computer science through public high school education. Learning, Media, and Technology, 38(2), 161–181.

Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.

Levinson, R. (2010). Science education and democratic participation: An uneasy congruence. Studies in Science Education, 46(1), 69–119.

Democratic participation is supposed to be enabled by the skills of scientific literacy. But there are several models of democratic participation—deficit, deliberative, and more radical forms. The author of this paper argues that educators need to make explicit to students the political and hegemonic bases underlying these models as well as the role of scientific knowledge and decision-making. This paper may be of interest to ISE educators leading programs supporting scientific literacy through argumentation, participation, and

Mallya, A., Mensah, F. M., Contento, I. R., Koch, P. A., & Calabrese Barton, A. (2012). Extending science beyond the classroom door: Learning from students’ experiences with the Choice, Control, and Change (C3) curriculum. Journal of Research in Science Teaching, 49(2), 244–269.

This paper explores how a school-day science and nutrition curriculum, Choice, Control and Change (C3), shaped student thinking, decision making, and actions outside the classroom. The curriculum taught health science content and engaged students in activities focused on analyzing and changing their personal health choices.

Barton, A. C., & Tan, E. (2010). 'It changed our lives': Activism, science, and greening the community. Canadian Journal of Science, Mathematics and Technology Education, 10(3), 207–222.

In this article, researchers report on the ways that middle school students positioned themselves as agents of change in their community by using the results of their research into local scientific phenomena and advocating for environmental reforms. This article might be of interest to ISE educators who are exploring how their programs can support the emergence of positive science learning identities in their youth participants.

Calabrese Barton, A., & Yang, K. (2000). “The culture of power and science education: Learning from Miguel.” Journal of Research in Science Teaching, 37(8), 871–889.

In this case study, Calabrese Barton and Yang describe how a young person’s strong interest in science (specifically reptiles) outside of school went unrecognized by his school teachers and his family as an aptitude for science. The authors describe how the prevailing view of science, framed in the context of the culture of power, can narrow learners’ perceived opportunities to pursue academic or professional pathways in science.

Briseño-Garzón, A. (2013). More than science: Family learning in a Mexican science museum. Cultural Studies of Science Education, 8(2), 307–327. doi:10.1007/s11422-012-9477-0

Briseño-Garzón analyzed interviews with 20 families after they visited Universum Museo de las Ciencias. She concluded that the benefits of visiting a science museum are “much more than science,” including spending quality time together as a family, interacting with others, learning about local culture and history, learning from each other, and, of course, learning science.

Birmingham, D., & Calabrese Barton, A. (2014). Putting on a green carnival: Youth taking educated action on socioscientific issues. Journal of Research in Science Teaching, 51(3), 286–314.

Through a critical ethnography, Birmingham and Calabrese Barton examined why and how a group of six middle school girls took civic action, defined as “educated action in science,” after studying green energy in an afterschool science program. The paper follows the students’ process in planning and implementing a carnival to engage their community in energy conservation and efficiency issues.

Whitmarsh, L. (2009). What’s in a name? Commonalities and differences in public understanding of “climate change” and “global warming.” Public Understanding of Science 18(4), 401–420. doi:10.1177/0963662506073088

At first glance, public knowledge of climate science appears encouraging. When prompted, most people can correctly identify some of the contributors to climate change. But they are much less likely to do so when they are not shown a checklist of possible causes. This study examined public understanding of two commonly used terms: “global warming” and “climate change.” The findings have important implications for informal science educators seeking to develop effective programmes and exhibitions on climate science.

Feinstein, N. W., Allen, S., & Jenkins, E. (2013). Outside the pipeline: Reimagining science education for nonscientists. Science, 340(6130), 314–317. doi:10.1126/science.1230855

Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.