Warning: Table './r2p_site/cache_page' is marked as crashed and last (automatic?) repair failed query: SELECT data, created, headers, expire, serialized FROM cache_page WHERE cid = 'http://relatingresearchtopractice.org/?q=keywords/150' in /home/butterfi/relatingresearchtopractice.org/includes/database.mysqli.inc on line 134

Warning: Cannot modify header information - headers already sent by (output started at /home/butterfi/relatingresearchtopractice.org/includes/database.mysqli.inc:134) in /home/butterfi/relatingresearchtopractice.org/includes/bootstrap.inc on line 736

Warning: Cannot modify header information - headers already sent by (output started at /home/butterfi/relatingresearchtopractice.org/includes/database.mysqli.inc:134) in /home/butterfi/relatingresearchtopractice.org/includes/bootstrap.inc on line 737

Warning: Cannot modify header information - headers already sent by (output started at /home/butterfi/relatingresearchtopractice.org/includes/database.mysqli.inc:134) in /home/butterfi/relatingresearchtopractice.org/includes/bootstrap.inc on line 738

Warning: Cannot modify header information - headers already sent by (output started at /home/butterfi/relatingresearchtopractice.org/includes/database.mysqli.inc:134) in /home/butterfi/relatingresearchtopractice.org/includes/bootstrap.inc on line 739

Results for Everyday experiences
Viewing 1 - 10 of 23

Nasir, N. S., & McKinney de Royston, M. (2013). Power, identity, and mathematical practices outside and inside school. Journal for Research in Mathematics Education, 44(1), 264–287.

This article discusses intellectual activities in African American culture that privilege mathematical thinking. The mathematical thinking in these activities is often not valued in the classroom. The authors argue for a shift from a deficit view of the cultural activities of non-dominant groups to an additive perspective that values the cultural wealth of these groups and uses that wealth to support student identity and learning.

Vossoughi, S. & Bevan, B. (October, 2014). Making and Tinkering: A review of the Literature. National research Council Committee on Out of School Time STEM: 1-55.

Vossoughi and Bevan (2014) conducted a literature review of educational research on making and tinkering. They considered what was known about learning opportunities for young people afforded by high-quality tinkering and making experiences. Specifically they reviewed the historical roots of making, the emerging design principles that characterized tinkering and making programs, the pedagogical theories and practices that lead to supportive and collaborative learning environments, as well as the possibilities and tensions associated with equity-oriented teaching and learning.

Stocklmayer, S. M., Rennie, L. J., & Gilbert, J. K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1): 1–44. doi:10.1080/03057260903562284

This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.

Ryoo, J. J., Margolis, J., Lee, C. H., Sandoval, C.D.M., & Goode, J. (2013). Democratizing computer science knowledge: Transforming the face of computer science through public high school education. Learning, Media, and Technology, 38(2), 161–181.

Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.

Bouillion, L. M., & Gomez, L. M. (2001). Connecting school and community with science learning: Real world problems and school-community partnerships as contextual scaffolds. Journal of Research in Science Teaching, 38(8), 878–898. doi:10.1002/tea.1037

To improve science education for culturally and linguistically diverse students, schools and communities can create “mutual benefit partnerships” to identify and address local problems. Through the example of the Chicago River Project, Bouillion and Gomez illustrate how such partnerships can connect formal learning contexts with the rich ways communities experience science outside of school.

Azevedo, F. S. (2011). Lines of practice: A practice-centered theory of interest relationships. Cognition and Instruction, 29(2), 147–184. doi:10.1080/07370008.2011.556834

What keeps an individual interested and motivates long-term engagement in a practice? This Azevedo article presents a grounded theory of long-term, self-motivated participation based on data gathered through an ethnography of hobbyists’ participation in model rocketry. The author emphasizes that long-term engagement depends on the connection of the activity to the participant’s “larger life.”

Clegg, T., & Kolodner, J. (2013). Scientizing and cooking: Helping middle-school learners develop scientific dispositions. Science Education, 98(1), 36–63. doi:10.1002/sce.21083

Participants in Kitchen Science Investigators, an afterschool program for middle school students, learn science through cooking, baking, and experimenting with recipes. In-depth case studies analyzed how and why girls begin to scientize, or see their worlds through a scientific lens, and how the program structure supported this shift.

Rosebery, A. S., Ogonowski, M., DiSchino, M., & Warren, B. (2010). "The coat traps all your body heat": Heterogeneity as fundamental to learning. Journal of the Learning Sciences, 19(3), 322–357.

This study makes the case for the ways in which children's everyday experiences are foundational to learning science. The authors argue for the importance of instruction that capitalizes on the diverse experiences and ways of thinking that children bring to the classroom. The article has implications for the design of learning activities in informal settings, where, in the absence of testing pressures, educators might be more free to engage children in "science talk" to support deeper meaning-making.

Nasir, N. S., & Hand, V. (2008). From the court to the classroom: Opportunities for engagement, learning, and identity in basketball and classroom mathematics. Journal of the Learning Sciences, 17(2), 143–179. doi:10.1080/10508400801986108

This article discusses the potential for learner engagement in the contexts of a basketball team and a mathematics classroom. The qualitative analysis centers on three aspects of each context: access to the domain, the integral roles available to learners, and opportunities for self-expression.

Bricker, L. A., & Bell, P. (2014). “What comes to mind when you think of science? The perfumery!”: Documenting science-related cultural learning pathways across contexts and timescales. Journal of Research in Science Teaching, 51(3), 260–285. doi:10.1002/tea.21134

Current science education reforms emphasize the ways in which students’ scientific practices, such as experimenting, collecting data, and interpreting results, develop over time. Bricker and Bell suggest that practices develop not only over time, but also across multiple settings and opportunities. Their study shows how, over several years, one youth’s identification with science was shaped by many everyday moments, social configurations, and collaborators.

Viewing 1 - 10 of 23